Theoretical course plan form - Ilam University of Medical Sciences

School: Health

Introduction to the lesson

Department: Mathematics

Course Title:

Mathematics of students:

Environmental Health

Prerequisite courses: Does not have

Event Place: School of Health in charge of the course (teacher): Hojjat Sayadi

Number of units:3 units

Teaching time:51 hours

Students' degree: Bachelor's degree

Email address: <u>Sayyadi-h@medilam.ac.ir</u>

General purpose of the lesson:

Familiarity of students with some mathematical methods and techniques to better understand the mathematical models made in environmental sciences and gain the ability to build simple mathematical models and solve and analyze them

Student Exam Resources:

1. Calculus and Analytical Geometry Twelfth Edition, 2010, George B. Thomas et al., Translated by Farzin Haji Jamshidi et al., Fifth edition 2016, Saffar Publications

2. Differential Equations, Dr. Massoud Nikokar, 44th edition, Azadeh Publications

How to evaluate a student during the course:

• Methods and time of assessment and evaluation of the student and the bar related to each evaluation:

Method	Score	Date	Time	
--------	-------	------	------	--

				How to evaluate
Regular student	5	During Semester	Scheduled training	Absenteeism
class			nours	attendance list
Do homework	20			Problem solving and assignments provided
End of semester	75	The time set by		Virtual test
exam		the faculty training		

Student assignments during the course:

-Regular attendance at class meetings based on the weekly and semester schedule provided by the training

-Active participation in class activities and questions and answers

-Perform homework and exercises provided and present them in class

-Participate in end-of-semester exam sessions according to the schedule provided and answer questions on time

Teaching methods and teaching aids used

-In the form of lectures, questions and answers and problem solving

-Teaching aids will include a whiteboard (whiteboard), magic and a video projector with a computer with Mathematic software.

Lesson rules and expectations from students

- 1- Attending on time based on the set time in the classroom
- 2- Observance of training and disciplinary regulations
- 3- Studying the contents of the previous session and preparing to attend the class

4- Solve problems and assignments presented at home and present them to the class representative in a timely manner

5- According to the educational regulations, unjustified absence in the final exam will be considered as a score of zero and justified absence will cause the removal of that course.

Schedule of presentation of mathematics-health discontinuous environmental curriculum in the second semester of the academic year 2020-2021

Session 1	Specific Objectives (Outline) Reminders of important math content	Special Behavioral Goals The student should be able to at the end of each session - Define the function and its types as usual. Be familiar with the role and	lecturer Dr. syaadi	Necessary preparation of students before the start of the class
		importance of mathematics in medical and health sciences.		
2	Defining boundaries and continuities and derivatives and expressing their meaning	Express the concept of limit of functions and limits of infinity and limit of infinity. - Be familiar with the concept of continuity and be able to identify types of discontinuities. - Be able to express the concept of derivative. Sequential derivatives of a given function are obtained. The derivative command obtains the powers of a given function.		review the contents of the previous session
3	Derivability of the function	 Understand the concept of a derivative of a given function at a point and be able to obtain it. Investigate and express the derivability of a function on a closed interval. State the chain rule in derivation and calculate it. Derive from the functions that are implicitly stated. 		
4	Determine the extreme points of the function and use the derivative to plot the functions	 Express his / her understanding of the concepts of relative and minimum, relative, maximum and absolute minimum of a given function in his / her domain. Express the role and average theorems and check for a given problem. Are there conditions for the roll theorem and the mean value or not? Using the first and second derivative tests, a maximum and a minimum of a given function is obtained. Draw a graph of functions 		

5	Familiarity with differential and	Express the concept of differential	
	linearization	and calculate the differential of a	
		given function.	
		- By showing an example, show the	
		use of differential in approximate	
		calculations.	
		- Learn the concept of linearization	
		and its application	
6	Familiarity with optimization and	- Get acquainted with optimization	
	lupital rule	issues	
		- Know the applications of the lupital	
		rule	
		Recognize the types of ambiguous	
		forms in calculating the limits of	
		functions and solve them	
7	Inverse of trigonometric functions	- Familiar with inverse trigonometric	
		functions and be able to obtain the	
		amplitude and range of such	
		functions. These functions are	
		antidotes to many other functions	
		and therefore appear in the answers	
		to a number of differential equations	
		in engineering mathematics and	
		physics.	
8	Definition of integral and familiarity	- Be able to express the derivative	
	with its types	and anti-derivative well.	
		- Calculate definite and indefinite	
		integrals well.	
9	Familiarity with integration methods	Use the methods of substitution	
		integration multiplication,	
		multiplication by 1, fractionation,	
		anomalous fractions, and	
10	Definite integral and its applications	Tractionation to calculate integrals.	
10	Definite integral and its applications	- Calculate a given integral.	
		- Osing the integral, calculate the	
		volume obtained from the period of	
		one bend and the length of the bend	
11	Eamiliarity with transcendent	Understand natural logarithms	
	functions	- Get acquainted with their	
		exponential and inverse functions	
		Understand the concepts of growth	
		and decline and the relative rate of	
		growth	
12		Familiarity with complex numbers	
_	complex numbers	and the method of solving quadratic	
		equations with negative exponents	

13	Familiarity with differential equations	- Solve first-order and simple	
	and solving them	differential equations	
14	Familiarity with vectors in plane and	- Calculate the internal multiplication	
	space	of vectors.	
		- Calculate the external	
		multiplication of vectors.	
		Understand the concepts of	
		orthogonal vectors	
15	Line and page examples in three-	- Be familiar with the equations of	
	dimensional space	line and page in three-dimensional	
		space	
16	Familiarity with linear algebra	Calculate the determinants and	
		inverse of a matrix.	
		- Solve linear equation devices into	
		different classes.	
17	Introduction of bivariate and	- Define a function of two variables	
	multivariate functions	and three real variables.	
		- Check the continuity of the function	
		of two (three) independent variables	
		at a point in the domain.	
18	Partial and differential functions of	- Define partial derivatives of	
	bivariate functions	bivariate functions and explain the	
		geometric interpretation and	
		calculation method.	
		- Know the relationship of first order	
		partial derivatives and the continuity	
		of bivariate functions.	
		functions	
10	Application of derivatives of hivariate	- Define the gradient vector of a	
19	functions and their application	bivariate function	
		Calculate how to obtain a tangent	
		line perpendicular to a point on the	
		alignment curve through the	
		function derivative	
20		- Find the maximum and minimum	
20	Extremes of bivariate functions	local and saddle points of the	
		bivariate functions.	
21	Integral of bivariate functions	Define the dual integral of a two-	
		variable function on an area	
		bounded by a coordinate plane	
		- Specify the limits of integration.	
		- Using the double integral, obtain	
		the area and volume of shapes	
22		- Familiar with vector functions and	
	Vector functions 1	be able to calculate differential,	
		divergence, gradient and curl of this	

		type of function	
23	Vector functions 2	- Familiar with vector functions and	
		be able to calculate differential,	
		divergence, gradient and curl of this	
		type of function	